Leathermaking Environmental Footprint Reduction Strategy

LWG Member Conference 2022 – Environmental Impact Session

PATH TO Net Zero

JBS will provide a roadmap consistent with the criteria set forth by the Science-Based Targets initiative (SBTi).

(JBS)

((NZØ) 2040

OUR Timeline

DATA ELABORATION & ANALYSIS 94.080 INDICATORS

MODELLING & DATA COLLECTION 120 DIFFERENT PROCESSES

GOAL AND SCOPE 30 PRODUCTS, 6 PLANTS, 4 COUNTRIES

APR 2021

SEP 2021

JAN 2021

LCA RESULTS Overview

HOT Spots

UPSTREAM

.

(TT /)

CORE

Raw Material 53%

Chemicals 31%

Waste produced 7%

Transport 6% Electric 4 Energy 2% Other

Exploratory Data Analysis

Global Warming Potential (GWP)

kg CO2 eq / m2

Exploratory Data Analysis

.

(JBS)

Exploratory Data Analysis

• Automotive • Furniture

0.04 0.06 0.08 0.10 0.12 Yield (m² Finished Leather / kg Raw Hide)

Automotive
Furniture

0.02

Strategy *Definition*

Supply Chain

1.

Article

Article

Article Article Facility 01

Company

Article

Article

Article

Article

Facility 02

Article

Article

Article

Article

Article Article

Article

(JBS) 🐰 KIND LEATHER

Facility 03

Strategy *Definition*

	ARTICLE	% PRODUCTION	LC
	BUFFED 01	20%	
	BUFFED 02	10%	
	FULL GRAIN 01	8%	
1 production facility	FULL GRAIN 02	7%	
	FULL GRAIN 03	6%	
-	KL FULL GRAIN 01	5%	
	KL FULL GRAIN 02	5%	
	KL FULL GRAIN 03	4%	
	FULL GRAIN 04	4%	
	LOW ODOR FULL GRAIN 01	4%	
	FULL GRAIN 05	4%	
	KL FULL GRAIN 04	3%	
		80%	

CA AVAILABLE? YES NO NO YES NO NO YES YES YES NO YES YES

Run new LCAs

or

Define adequate proxies from similar articles

10 Beamhouse Plants

1 Distribution Center

5 Crust / Finishing Plants

Customer

Strategy Definition

$t CO_2 eq.$

2022

Facility 05 Facility 04 Facility 03 Facility 02 Facility 01

KEY ACTIONS *Identified*

1. PROCESS IMPROVEMENT THROUGH ENVIRONMENTAL SIMULATION

2. ASSESS THE IMPACT OF CHEMICALS

3. FOCUS ON THE NET SURFACE AREA

4. GENERATE INFORMATION ON THE IMPACT OF ANIMAL FARMING

1. PROCESS IMPROVEMENT THROUGH ENVIRONMENTAL SIMULATION

WHAT IF we replace this chemical

WHAT IF we increase the net

surface area

WHAT IF we use less water in retanning

WHAT IF	
we rethink	
the supply	
chain	

KINDI	IPCC GWP 100a				
KIIVIPI	AS IS		TO BE		Δ
	kg CO2 eq	%	kg CO2 eq	%	%
Water Consumption	0,00	0%	0,00	0%	0%
Thermal Energy Consumption	0,05	3%	0,04	2%	-32%
Electric Energy Consumption	0,01	0%	0,01	0%	-26%
Chemicals Consumption	1,88	96,75%	1,86	97,71%	-1%
Water Pollutants	0,00	0%	0,00	0%	0%
Waste Water	0,00	0%	0,00	0%	-25%
Total	1,94		1,91		-2%

WHAT IF

KIND LEATHER

(JBS)

2. ASSESS THE IMPACT OF CHEMICALS

1. Engage with suppliers to provide more. information on the impact of the chemicals we source (from a LCA perspective).

LCA Impact

Biodegradability

Biobased Content

ZDHC MRSL Status

SINGLE SCORE

3. FOCUS ON THE NET SURFACE AREA

Beamhouse | Wet Blue

Pharmaceutical, Cosmetic or Food Industries

Crust and Finishing

Less waste generated

Cutting and Assembly

Higher cutting yield

3. FOCUS ON THE NET SURFACE AREA

3. FOCUS ON THE NET SURFACE AREA

4. ENGAGE WITH SUPPLIERS AND GENERATE INFORMATION ON THE IMPACT OF ANIMAL FARMING

FAZENDA NOTA 10

Program with tools to allow ranchers to improve management and increase the efficiency of their production systems.

15% Increase on the **ADG** (average daily

gain)

23%

Increase in the stocking rate (animal unit per hectare/acre) 9%

Reduction on the cost per kg

Classes on:

- Nutrition
- Animal Reproduction

(JBS)

KIND LEATHER

- Animal Welfare
- Pasture
- Genetics
- Management

~90 suppliers

20% volume

~5,000 suppliers

60% volume

~20,000 suppliers 20% volume

GHG Calculator for supplying farms

Assessment of Pasture Degradation and Land Use Change Utilization of EVI (Enhanced Vegetation Index) for pastures to classify into:

> **Severely Degraded Moderately Degraded** Non-degraded Medium biomass **High biomass**

GHG Calculator for supplying farms

2. Sources of Emission and GHG Removal

CH₄ and N₂O emissions from manure management and enteric fermentation

CO₂ emissions from Severely and Moderately degraded pastures

Livestock

Pasture

CO₂ removals from Medium and High biomass pastures

CO₂ emissions from the supression of native vegetation

Land Use Change

CO₂ removals from the regeneration of native vegetation

(JBS)

GHG Calculator for supplying farms

Carbon Intensity – Internal View

State level

Farm level

Microregion level

28,495

farms assessed

For more information: visit our website

www.biomatcenter.org

BIOMATERIALS COMPETENCE CENTER

1. Create a shared understanding of the environmental impacts and benefits of biomaterials manufacturing.

2. Support harmonization of key aspects and assessment criteria by building consensus

3. Develop innovative tools for the environmental impact reduction of farming and biomaterials manufacturing

4. Support scientific publications and raise awareness of stakeholders and the larger public

KEY ACTIONS *Identified*

1. PROCESS IMPROVEMENT THROUGH ENVIRONMENTAL SIMULATION

2. ASSESS THE IMPACT OF CHEMICALS

3. FOCUS ON THE NET SURFACE AREA

4. GENERATE INFORMATION ON THE IMPACT OF ANIMAL FARMING

